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synopsis 
Bueche’s theory is modified to account for the effect of polydispersity on viscosity of 

polymeric fluids. Results indicate that the ratio of weight-average to number-average 
molecular weight,, (Mto)/(Mn), though a common measure of polydispersity, is insufficient 
to account completely for the effect of polydispersity on viscosity. 

It is possible to predict the non-Newtonian flow curve of a solution of 
high polymer from molecular theories such as that of Bueche.’ Bueche’s 
theory is well within order of magnitude agreement with experimental data 
for polyisobutylene, poly~tyrene,~ poly(methy1 metha~rylate),~ poly- 
(acrylic acid) ,6 carboxymethyl cellulose,6 polyethylene,’ and numerous other 
materials. Examined in greater detail, however, the evidence would seem 
to indicate that variations in molecular weight distribution are not ade- 
quately accounted for by Bueche’s theory. 3,8 This is not surprising, in view 
of the fact that the theory assumes all molecules to be identical in length, 
and so to constitute a monodisperse system. 

The general indication is that polydispersity causes a fluid to deviate 
from Newtonian behavior at a lower shear rate (when referred to equal 
values of concentration, temperature, zero-shear viscosity, and average 
molecular weight) than a monodisperse sample, and to show a more gradual 
rate of decrease of viscosity with shear rate. The purpose of this note is 
to modify Bueche’s development and present a theory from which the 
quantitative effect of the molecular weight distribution on the flow curve 
may be determined. 

It should be stated at this point that the use of Bueche’s theory is illus- 
trative, and does not imply a belief that the theory is quantitatively valid 
for a monodisperse polymer. One could just as well proceed with the 
discussion to follow by using theories due, for example, to Rouseg or Pao,’O 
or Graessley.” The point is that even the qualitative failure of these 
theories is commonly ascribed to the effect of molecular weight distribution. 
By investigating this feature of the problem one might hope to learn 
whether other aspects of polymer structure and interaction are of potential 
significance, and therefore deserving of significant research effort. 
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Theory 
Bueche determines the increase in viscosity per unit volume of solvent 

due to the presence of a single molecule. An intermediate result is 

Afj = q - q, = cfa2N2/36) (F(r l$ )  (per molecule/volume) 
A 

(1) 
where T I  is a relaxation time given by 

T I  = fa2N2/3?r2kT (2) 

Here N represents the number of monomer units per molecule (degree of 
polymerization), a is the distance between monomer units, and f is a 
molecular friction coefficient. The solvent viscosity is qs, k is the Boltz- 
mann constant, and T is absolute temperature. The function F(71f) is a 
series of the form 

The molecular weight M may be introduced through the molecular 
weight of a monomer unit m to give M = Nm, and 

Afj = (fa2M2/36rn2)F(r1f) 

71 = fa2M2/3?r2m2kT (4) 

Now we define a continuous distribution function for molecular weight 
+(M) ,  such that the fraction of molecules having molecular weights in the 
range M to  M + dM is +(M)dM. By its definition 

and 

where 5 is any function of M ,  and (5) denotes its average value. 
If v is the number of molecules per unit volume of solution, then the 

number of molecules (per unit volume) having molecular weights in the 
range M to M + dM is v+(M)dM. If the increase in viscosity per mole 
cule/volume is multiplied by this quantity one finds the increase in viscosity 
due to molecules of molecular weight M .  By assuming that the viscosity 
increase due to molecules of different molecular weights may be summed 
(integrated) over the range of molecular weights to give the total increase 
in viscosity, one finds 

W 

q - q, = (vfu2M2/36m2)F(71f)+(M)dM (7) 
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Since F(0) = 1, and vfu2/m2 is supposedly independent of M, one finds, 
in the limit of vanishing shear rates,* 

m 

TO - 1 1 ~  = (vfa2/36m2) 1 M2+(M)dM = vju2(M2)/36rn2 (8) 

12 M 2  (TO - 7s) 
71‘-- 

a 2  (M2) vkT 

The mass concentration c is related to the number density v by 

c = v(M)/No (10) 

where No is Avogadro’s number. 
Commonly used molecular weight averages are the number-average, 

(Ma) = J m  M+(M)dM = ( M )  
0 

and the weight-average, 

(M,) = J- M2+(M)dM/(Mn) (12) 
0 

= (M”>/(Mn) 
In  terms of these averages our modification of Bueche’s theory becomes 

where (rl)* represents a relaxation time based on the number-average 
molecular weight. 

We note that similar results may be found in the works of Peticolas12 and 
Menefee and Peticolas.l8 These workers considered the theory of Zimm14 
rather than that of Bueche, and most of their results are in terms of a weight 
fraction distribution function, rather than the number fraction used here. 

*In effect this begs the question of the validity of the theory at low shear rates. The 
result is that molecular constants such as f and a are replaced by bulk properties of the 
solution. 
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More important, however, is the fact that they did not investigate the 
quantitative dependence of viscosity curves on the shape of the distribution 
function. 

Equation (13) is the result sought: it gives ~ ( f )  as a function of ,$(M). 
Before turning to some numerical examples it is possible to draw an infer- 
ence about the general effect of ,$(M) on the viscosity curve. The M 2  term 
in eq. (13) is an indication that the viscosity will be more affected by the 
high end of the molecular weight distribution than the low end. This is in 
agreement with a recent observation of Nakajima and Wong16 on poly- 
ethylene blends. They found that the addition of high molecular weight 
material to a sample appreciably affected the shape of the flow curve, while 
the curve was much less affected by the addition of low molecular weight 
material. 

Numerical Examples 

Equation (13) has been integrated numerically to  illustrate the shape of 
the viscosity curve for various molecular weight distributions. As an 
illustrative example we took a form of distribution function given by eq. 
(15) :16 

+(M) = [ B A / r ( A )  ]MA-le-BM (15) 

where r ( A )  represents the Gamma function. 

weight determinations. For example, 
The constants A and B are determined from two average molecular 

A measure of the breadth of the molecular weight distribution is 

(Mw)/(Mn) = ( A  + 1 ) / A  (18) 

The larger the value of (Mw)/(Mn),  the broader is the molecular weight 
distribution. 

Figure 1 illustrates a few numerical results for the distribution function 
defined in eq. (15). The curves vary with (MW)/(Mn) in the manner 
commonly observed. 

One source of controversy in the use of reduced variable plots lies in the 
question of which molecular weight average should be used in the calcula- 
tion of an average relaxation time, (71).4*16 

It is possible to show viscosity curves using different definitions of (71), 

since eq. (14) could be rewritten as 

71 = (M2/(Mw)(Mz))(~l)z (19) 

where (71)~ is a relaxation time based on any molecular weight average, 
(M,). Actually, such curves are obtained by shifting the curves of Figure 1 
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Fig. 1. Theoretical flow curves for materid with distribution function of eq. (15). Relaxa- 
tion time based on number-average molecular weight. 
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Fig. 2. Fig. 1 replotted by basing relaxation time on 2-average molecular weight. 

by the factor (M,)/(M,J. 
time on the 2-average molecular weight, 

Figure 2 shows the result of basing the relaxation 

while Figure 3 shows the same curves plotted for a relaxation time based 
on the (2 + 1)-average molecular weight, 

W Z + d  = (M4)/W3) (21) 

Brodnyan and Kelley16 offer evidence that the relaxation time should be 
based on the (2 + 1)-average, but also point out that different averages 
than this are appropriate at low concentration, and at high shear rate. 
Our results indicate that the higher averages do tend to compress the differ- 
ences among various curves, but not equally at all shear rates. Further- 
more, neither of these average relaxation times forces the curves of poly- 
disperse systems to come especially close to Bueche's theoretical curve. 
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Pig. 3. Fig. 1 replotted by basing relaxation time on (2 + lkaverage molecular 
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Fig. 4. Comparison of theory with experimental data17 for two polydisperse samples of 
poly isobut ylene. 

Undoubtedly, no single average of molecular weight will be sufficient to 
allow a unique reduced variable correlation to describe precisely the vis- 
cosity curves of a wide class of materials, in view of the fact that the curves 
are sensitive to the shape of the molecular weight distribution, for which 
(M,)/(Mn) is not a unique measure, in general. 

Indeed, Porter et al." present data for solutions of polyisobutylene which 
show clearly that the viscosity curves do not always rank according to 
(M,)/(Mn), but instead are appreciably affected by the tail of the molecular 
weight distribution function. We have taken their measured molecular 
weight distribution functions and predicted (q  - qs)/(vo - qJ versus 
+(& with the results shown in Figure 4. The correspondence between 
theory and experiment is poor. 

Closer examination indicates a possible reason for this poor agreement. 
One does not expect these non-Newtonian molecular theories to be valid 
except for molecular weights above the entanglement molecular weight, Me.  
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If M e  for bulk polyisobutylene is taken as 17,000,18 and if the product of 
M e  and volume fraction of polymer is taken to be 17,000 for solutions,8 
then one finds Me for the 45% solution used by Porter et a1.l' to  be approxi- 
mately 35,000. The distribution function for the polymers studied indi- 
cates that about half the total number of molecules of each polymer were 
of molecular weight less than Me.  Hence one must be careful in applying 
such theories to polydisperse systems even when (M,) > Me.  A more 
proper restriction would be that (M,) should probably be at  least an order 
of magnitude greater than Me in order to apply theories such as Bueche's 
to polydisperse polymers. 

It is unfortunate that the data examined represent the only example of 
a complete distribution curve accompanied by a complete viscosity curve 
known to the author. As more such data become available one might hope 
for a more significant test of the ideas presented here. 

Another significant failure of these theories may lie in our ignorance 
of polymer-solvent interaction and of polymer-polymer interaction. In- 
deed, one might express surprise that the theories work as well as they do, 
in view of the fact that such interaction is not built into the molecular 
analyses. In fact, however, the device of replacing the frictional parameter 
f by bulk properties at  zero shear rate [as illustrated in going from eq. (8) 
to eq. (9)] has the effect of introducing the major consequences of inter- 
action into the theory explicitly through the zero-shear viscosity, qo. One 
might suppose that this interaction between polymer and solvent, and 
among polymer molecules in concentrated solutions and melts, is itself a 
function of shear rate and concentration, and varies from one polymer- 
solvent system to another in a manner beyond our ability to describe at  
the present time. 
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R6sum6 
La th6orie de Bueche est modifiCe pour rendre compte de l’effet de la polydispersite 

sur la viscosit6 de fluides polymeriques. Les dsultats indiquent que le rapport du 
poids moleculaire moyen au poids moleculaire moyen en nombre (Mm) / (Mn) ,  bien qu’ 
6tant une commune mesure de polydispersitC est i n sasan t  pour rendre compte com- 
pktement de l’effet de la polydispersitd sur la viscosit6. 

Zusammenfassung 
Die Theorie von Bueche wird eur Beriicksichtigung des Einflusses der Polydispersitat 

auf die Vikositat von Polymerfliissigkeiten modifieiert. Die Ergebnisse zeigen, dass 
das Verhaltnis von Gewichtsmittel zu Zahlenmittel des Molekulargewichts (Mm)/ 
(Mn), das gemeinhin als Mass fur die Polydispersitat benutat wird, doch au einer vol- 
lstandigen Erfassung des Einflusses der Polydispersitat auf die Viskositat nicht aus- 
reicht. 
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